

Ball State University Ground-Source Geothermal Fields

Baseline hydrogeologic characteristics of the ground-source geothermal fields at Ball State University (Muncie, IN)

Alan Samuelson¹, Carolyn B. Dowling¹, Klaus Neumann¹, Lee Florea¹, and Phil Bonneau²

¹Dept. of Geological Sciences, Ball State University, Muncie, IN; ²Ortman Drilling and Water Services, Kokomo, IN

BSU Annual Utility Use

• Coal 36,000 tons

• Electricity110x10⁶ kwh (or 11x10³ homes)

• Natural Gas 150×10^6 cf (or 1.6×10^3 homes)

(Source: BSU, pers. comm.)

Geothermal Conversion

- Reduce pollutants
 - CO₂
 - **SO**₂
 - NO_x
 - CO
 - Particulates
- Reduce carbon footprint by 50% (Lowe et al. 2010)

• Will save \$2M annually (Lowe et al. 2010)

Geothermal Systems

- Winter
 - Heat moves from the warmer ground to the cooler buildings
- Summer
 - Heat moves from the warmer buildings to the cooler ground

(Department of Energy (n.d.))

Phase I

1800 5 to 6 in. boreholes/ **3600 exchange loops**

400 ft depths

15 ft grid

Common problem: loss of circulation

South District Energy Station

2300 Wells

Phase II

This is original field location, Wells now planned to go further east including tennis courts.

Could be fewer wells to 500 feet.

Shale shaker filter systems – double screen removes cuttings and lets fluid circulate back in the system

Grout has addition of 300-400 lb of sand to one bag of grout to increase the thermal conductivity

As many as 10 rigs on site at one time

ved

Parking Lot finished over Phase I South Field

> Pond between North and South Phase I Fields

111

South Field NE Monitor Well

Phase I – Energy Conversion Station

05.27.2011 13:09

Regrading for sports fields over Phase I North Field

05.27.2011 13:16

Dept of Geological Sciences

• Geology Geothermal Team

- Involved in designing monitoring strategy
- Involved in design of monitoring wells

- Student Involvement
 - Research Classes
 - Collect and analyze data and samples
 - Presentations

Monitoring Wells

Monitoring Wells

- Shallow Gravel Monitors
 - 2 wells
 - 26-30 ft deep
- Top of Bedrock Monitors
 - 8 wells
 - 60-90 ft deep
 - 30 ft screens

(Courtesy of Ohio EPA, 2008)

Deeper Nested Monitoring Wells

shallow gravel wells

2 monitors

▲ top of bedrock wells

8 monitors

nested bedrock wells

5 nests to 400 ft

5 screens each

Drilling Nested Wells

Nested Wells

- Single 8" Borehole
- 5 Piezometers
 - 70—95 ft
 - 160—165 ft
 - 230—240 ft
 - 325—330 ft
 - 400 ft
- 30 ft screens
- Placement based on results of horizontal water flow gradients from the 8 original monitors
- Depths based on drilling logs, gamma logs, and bagged samples

(Einarson 2005)

Nested Monitors

4.

jä.

Composite Bedrock Stratigraphy of East Central Indiana

(we are concerned with the section indicated by arrows)

Gamma Ray Logging

- Rock Identification and Strata Correlation
- A downhole instrument is lowered in the borehole (prior to well installation)
- Measures the natural radiation
- Different rocks emit different amounts of radiation
 - Shale: More
 - Sandstone: Less

Gamma-Ray Logging

Dr. Marni Karaffa, Indiana Geological Survey

From IGS Bulletin 58, Lower Silurian, Rexroad, 1980

From IGS Bulletin 58, Lower Silurian, Rexroad, 1980

ġ	1	NL			F		A	128		- CO				1	388	2 2	2 2	3 21	25 2	6 27	20	29 3	31	32 3	3 34	BB	58 3)	1	11	2
												2		4"	AAA	¢ q	00		6-7	5-5	0	¢ ¢	•	0 0		AA	A	11	1	L
Holes	S V	vit	h	Ci	rc		121	tic	n	T	0	SS		6"			<u> </u>	9			φ	¢ •	¢ -4"	¢ (9 9	•22 -6"		-6"	,)	11
D.L.	7 3		51	6 7	18	9	0 11	12	131	14	151	\$ 17	118	-	9	21 2	2 23	24	0 0	7	9	¢ ¢	0	0 0	¢ ¢	• 44	0 10	10	1	//
1010	0 0				•	0	0 0	o	01	0		91	o			0 0	0	0	8	0	10	9. 6	2	30 4		217	3	*XX	1	U
w/o	0 0	0			-	0			0	0		. 0	0	0		0 10	0	0	•		0	0 0	-0	0	0		•	000	11	
440			0		0	0			0	In					0	0 0	0	0	0			0 0	\bigcirc	0	• •	0 10	0	VV	-	181
TTO	0	10	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	C		0	0			0 0	0					SI	Ju	13
SSe	0 0	10	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	- 0	0	5	0	0	0	0	0				0	° TT	15
RRO	0 0	0	0	0 0	0	0	0 0	•	0	0	0 10	0	0	0	0	01 10	0	0	0	0 0	0	0 0	2	0		0		0	-0 35	1
900	0 0	o	0	0 0	10	0	0 0	0	0	0	0	0	0	0	0	0 0	- 0	-0-	0 4		0	0 0	0	6	0 0	0 4	0	e	ope	1
PP .	0 0	0	0	0 0	10-	0	0 0	0	0	0	•	0	C) 0	0	0 0	0	0	0	0	0	0 0	0	9 4	0 0		0	0	-9	14200
00 0	0 0	0	o	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	•	0	0		0	0 0	0	9		0	0	0	0	PT
NNO	0 0	0	0	0 0	0	•	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0 0	o	10 4	0 10	0	0 01	0	0 0	10 MAN
mmo	0 0	0	0	0 0	0	0	0 0	-0	0	10	0 0	0	•	0	.0	01 0	• •		0	0	0	0 0	0		0 40	0	0 0	0	0 0	MM
Ho	0 0	0	0	0 0	0	0	0 0	0	0	-6-	0 0	0	0	0	•	0 0	0	0.	0 0	. 0.	0	0 0	•		0 0	0	0	0	0 0	OLL
KKO	0 0	0	0	0	0	0	0 0	0	0	0	0 4	0	0	0	•	0 0	0	0	0 10	0 0	0	0 0	0 8	0	10-	0	10" 8	0 10	0	OKK
25 or	2 3	4	5 (7	10	9	0 0	-12	13	14	15 10	-17	18	197	26 3	21 2	2 23	24	25 2	6 27	28	0 10	0	2763	e je	10	0 /0	20 20	2 0	0 32
II o	0 0	0	0		0	0	0 0	•	0	0	0 0	0	0	I° C	ið P	0.0	0	0	0	0	0	° 62°	14	3	6 10	20 4	-01	0 0	0 0	OLL
110	0 0	0			0	0	0 0	0	0	0.	0 0	0	D	0	0	0 0	0	0	0 0	0	0	0 0	2	0. 1	0 0	1	•	0 0	0 0	• 44
FE					0	0	0 0	e	0	10	01 16	0	0	0	0	5 6	0	t	0 0	0 0	10	0 0	3	0	0 0		0	0	10 10	o GG
EEO	0 0	0	0 4					0	0	0				0					0 0		10	0 0	P	0	0 0		0	o d		oFF
DD .	0 0	o	0	0	0	0	0 0			0	0		1	-0				A			1	1/2		S		i.		0	0 0	PEE
cco	G O	0	0	0	0	0	0 0	6	0	e	0 0	0	0	0	0	0			0 10		10	0 0				1/		P	1-0 IO	000
88 .	0 0	0	0 0	0	0	-	0 0	0	e	0	0 0	0	0-	0	0	6 0	0	0	0 0		0	0 0	0		0 0	11	0	39	40	000 CC
AA	0 0		0	0	10	0	0 0	0	0	10	0 0	0	0	0	•	01 0	0	0	0 6		0	0 0	0	0	0 10		0	AA	41	42
Ze	0 0	0	0 0	0	0		0 0	0	0		0 0	0	•	0	•	0-0	-0	-0	0 0		0	0 0	0	0	0 0		0	2		
Yo	0 0	0	0 0	0	à	0	0 0	0	0	•	0 0	0	0	0	0	0 0	0	•	0 6		10	0 0	0	0 4	0 0	2	6	o Y	F	3
Xo	0 0	0	0 0	0	0	0	c 0	0	0	0	0 0	0	0	0	•	0 0	0	0	0 0		0	0 0	0	0	0			· X ·	-6	D
ω÷		0	0 0	0	9	0	0 0	0	0	10	0 0	o	0	0	0	0 0	0	0	0 0	0	10	0 0	0	0		1.3	G A	-ω	6"	
. No	0 0	0	0 0	e,	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	9	0	35	2" -6'	~		
-49	003	4	5 6	10	2	0. 4	0 0	10	12	14	0 0	01	10	0	0 20	0 0	0	10	01 0	6 32	10	0 0	SI	32	2 34			-4		
5) 55	0	1	contradio 2		1	-	-	11.00	-		- 119				-	-		in the state	-012		4"	-	A	3"	2		-			

Three-Point Problem

- shallow wells
- ▲ stone wells
- nested wells

Vertical Temperature Gradients

Stockton College, NJ

Ball State, 5/23/11

Monitoring Wells Plus 3 Metal Thermal Borings

shallow gravel wells 2 monitors to 26-30 ft \triangle top of bedrock wells 8 monitors to 60-90 ft nested bedrock wells 5 nests up to 400 ft 5 screens each ***** unscreened metal pipes to 400 ft depth

Thermal Profiles SE Corner of South Phase 1 Field (depth in feet vs. temp in degrees C)

5/12/11

10/27/11

SE metal pipe

Phase 2 Site as of Nov. 7 2011

University Ave (bottom) is really straight on this panorama

Current and Future Work

- Shallow and Limestone Wells:
 - Continue seasonal monitoring, data analysis
- Nested Wells
 - Collection of water levels, temperature, and conductivity
 - Currently starting to use equipment for continuous monitoring and for pump sampling from the deeper small diameter nested wells
- Stratigraphic description
 - Current study of bagged cutting samples (every 10 feet)

Current Concerns

- Will differences in hydraulic conductivities in Silurian aquifers and tighter Ordovician play impact heat exchange?
- Have there been changes in natural transmissivity by quantities of injected grout?
- Has there already been a change in water flow through or around the fields due to drilling and grout?
- How much will flow directions change when dewatering can be discontinued at the energy exchange station?
- How constant will the thermal profile be through the seasons and following years?
 - Will we be able to place several monitors in the center of the Phase 2 fields?

Acknowledgments

- Fall 2010 GEOL 480 Class
- Individual students Spring to Fall 2011
- James Lowe, Director of Operations, BSU
- Kevin Austin, Ortman Drilling
- Dr. Marni Karaffa, IGS

References

Ball State University (n.d), Geothermal Map, http://cms.bsu.edu/About/Geothermal/FAQ/GeothermalMap.aspx; accessed 15 February 2011.

Department of Energy (n.d.), Geothermal Heat Pumps, http://www.eere.energy.gov/basics/renewable_energy/geothermal_heat_pumps.html; accessed 15 February 2011.

- Einargon, M, 2005, Chapter 11: Multilevel ground-water monitoring *in Handbook of Environmental Site Characterization and Ground-Water Monitoring* (ed D. M. Nielsen), CRC Press.
- Lowe, J., R. Koester, and P. Sachtleben, 2010, Chapter 17: Embracing the Future: The Ball State University Geothermal Project *in Universities and Climate Change: Introducing Climate Change to University Programmes* (ed W.L. Filho), Springer-Verlag, Berlin, DOI 10.1007/978-3-642-10751-1_17.
- Ohio EPA, 2008, Chapter 7: Monitoring Well Design and Installation *in Technical Guidance Manual for Ground Water Investigations*, Columbus, OH.
- Rexroad, Carl, 1980, Stratigraphy and Conodont Paleontology of the Cataract Formation and the Salamonie Dolomite (Silurian) in Northeastern, Indiana, Indiana Geological Survey Bulletin 58, 83p.